English
邮箱
联系我们
网站地图
邮箱
旧版回顾



gdh.线路检测:福建平潭海域发生沉船事故5人获救6人失联

文章来源:gdh.线路检测    发布时间:2018年10月19日 22:34  【字号:      】

gdh.线路检测

◆ 要求:旅游相关专业,了解体育、旅游、户外行业,有旅游从业经验优先。

体育招聘|中超公司、体奥动力、恒健国际等7家公司25个岗位

>>>>岗位5:竞赛执行专员

◆ 职责:负责在赛事执行中的招募、场地器材、裁判员组织等环节。

◆ 要求:体育专业人才,活动组织执行能力强;思路清晰;有赛事、户外经历优先。

微软提出的系统使用迁移学习方法将不同源语言中词汇级别和句子级别的表征共享到一个目标语言中。该设置假设多种源语言包括高资源语言和低资源语言。微软的主要目标是能够共享所学的模型,以便帮助低资源语言。该系统架构对神经机器翻译(NMT)的编码器-解码器框架新增了两个修改,以实现半监督通用神经机器翻译。主要修改了编码器部分,如图 2 所示。

微软提出新型通用神经机器翻译方法,挑战低资源语言翻译问题

1. 为了支持多语词级别的共享,词汇部分通过一个通用词汇表征(ULR)来共享。

2. 专家模型表征所有源语言句子级别的共享,与其他语言共享一个源编码器。

这两种修改使低资源语言能够利用与较高资源语言相关联的词级和句子级表征。

ULR 利用预投影步骤,将在单语语料库上训练的所有词嵌入投影到统一的通用空间中。预投影可以使用种子词典、小型并行数据或无监督方法来实现。如图 3 所示,研究者最终得到了所有语言的统一表征:在这个例子中,所有语言都投影到英语表征中。值得注意的是,统一嵌入空间是使用 word2vec 学习到的单语嵌入投影而得的,这对于翻译任务而言并不是最佳的。

与哺乳动物视觉系统一样,深度学习采用多层结构来表示越来越抽象的特征(例如视觉对象或语音),并且通过机器学习来调整不同层之间的连接权重,不再依赖工程师的设计。这些最新进展已经扩展到了计算机执行任务的指令表中。当然,大脑依然比先进的计算机具有更高的灵活性,泛化和学习能力。

斯坦福教授骆利群:为何人脑比计算机慢1000万倍,却如此高效?

借助于计算机,神经科学家将逐步发掘大脑的工作机理,也有助于激发工程师们的灵感,进一步改善计算机的体系结构和性能。无论谁在特定任务中胜出,跨学科的相互影响将推动神经科学和计算机工程的发展。

本文发表于《智库:四十位科学家探索人类经验的生物根源》(Think Tank: Forty Scientists Explore the Biological Roots of Human Experience),耶鲁大学出版社出版。




(责任编辑:王晶晶)

附件:

专题推荐

相关新闻


© 1996 - 2017 中国科学院 版权所有 京ICP备05002857号  京公网安备110402500047号 

网站地图    地址:北京市三里河路52号 邮编:100864